

1. Molekular gebaute Stoffe	
Atombindung = Elektronenpaarbindung	Überlappung zweier oder mehrerer Atomhüllen (bzw. Orbitale) führt zur Bindung von Atomen durch ein gemeinsames, bindendes (oder mehrere gemeinsame,
Formalladung	bindende) Elektronenpaar(e). Die Formalladung eines Atoms ist die Differenz aus der Anzahl der Valenzelektronen des ungebundenen Atoms und der in der Valenzstrichformel zugeordneten Zahl an Valenzelektronen des Atoms. (+)
Mesomerie	Als Mesomerie wird die Erscheinung bezeichnet, dass die tatsächliche Elektronenverteilung innerhalb eines Moleküls oder Ions nur durch mehrere Grenzformeln beschrieben werden kann.
Orbital	Die Orbitale lassen sich bildlich als Elektronenwolken darstellen. Sie geben den Raum an, in dem sich Elektronen mit 99%-iger Wahrscheinlichkeit befinden.
Valenzstrichformel	Schreibweise, die den zweidimensionalen Bau eines Moleküls zeigt; die Anordnung der Atome, ihrer Atombindungen und der nichtbindenden Elektronenpaare werden verdeutlicht.
2. Räumlicher Bau von Molekülen	
Gruppen von Kohlenwasserstoffen	 Alkane → besitzen nur Einfachbindungen, allgemeine Summenformel C_nH_{2n+2} Alkene → besitzen mindestens eine Doppelbindung, allgemeine Summenformel für Monoalkene C_nH_{2n} Alkine → besitzen mindestens eine Dreifachbindung, allgemeine Summenformel für Monoalkine C_nH_{2n-2}
	außerdem Unterscheidung in verzweigte und unverzweigte Kohlenwasserstoffverbindungen
EPA-Modell	Sowohl bindende als auch nichtbindende Elektronenpaare stoßen sich elektrostatisch ab. Deshalb ordnen sich die Atome im Molekül räumlich optimiert an:
	o tetraedrisch: z.B. Methan (Bindungswinkel 109,5°) o pyramidal: z.B. Ammoniak (Bindungswinkel 107°) o gewinkelt: z.B. Wasser (Bindungswinkel 104,5°)
Isomerie	Isomere sind Stoffe, deren Moleküle die gleiche Summenformel, aber verschiedene chemische und physikalische Eigenschaften haben.
E/Z-Isomerie	Form von Isomerie, die auf Grund der fehlenden Drehbarkeit der Doppelbindung bei Alkenen auftritt; sie bezeichnet die unterschiedliche Anordnung der Atome an der Doppelbindung (E = entgegen, Z = zusammen).

Keilstrichformel	Darstellung der räumlichen, dreidimensionalen
	Anordnung der Atome in einem Molekül in der der
	zweidimensionalen Zeichenebene
Konstitutionsisomerie	Form von Isomerie, bei der die einzelnen Isomere eine
	unterschiedliche Verknüpfung der Atome im Molekülbau aufweisen
	Beschreibung der räumlichen Anordnung der Atome
Malalallanaanatala	sowie der Bindungswinkel und Bindungslängen in
Molekülgeometrie	einem Molekül(ion) unter Verwendung des EPA-
	Modells
Nomenklatur	Unter Nomenklatur versteht man in der Chemie die
	systematische und einheitliche Namensgebung für chemische Stoffe nach den IUPAC-Regeln.
3. Zwische	enmolekulare Kräfte und ihre Auswirkungen
Aldehyde	Die Gruppe der Aldehyde ist erkennbar an der Aldehyd-
	Gruppe. Q
	Beispiel: Ethanal H ₃ C-C
	Dipol-Dipol-Wechselwirkunger
Alkohole	Die Gruppe der Alkohole ist erkennbar an der Hydroxy-
	Gruppe. H H
	Beispiel: Ethanol H-C-C-OH
	Wasserstoffbrücken H H
Bindungspolarität	Bei polaren Elektronenpaarbindungen ist das bindende
	Elektronenpaar zum elektronegativen Partner
	verschoben;
	Bei unpolaren Elektronenpaarbindungen ziehen beide Bindungspartner gleich stark am bindenden
	Elektronenpaar;
	ΔEN groß (>1,7)
	→ Ionenbindung, Elementarladungen (+, -)
	ΔEN mittel (0,5-1,7)
	→ polare Atombindung, Partialladungen (δ ⁺ , δ ⁻)
	ΔEN klein (<0,5) → schwach polar bis unpolare Atombindung
Carbonsäuren	Die Gruppe der Carbonsäuren ist erkennbar an der
	Carboxy-Gruppe.
	Beispiel: Ethansäure H₃C—COH
	→ Wasserstoffbrücken + Dimerisierung
Dichteanomalie	Wasser hat im flüssigen Aggregatzustand bei 4°C die
	höchste Dichte.
	Ein Molokül hogitzt eine ungummetrische
Dipol	Ein Molekül besitzt eine unsymmetrische Ladungsverteilung, wodurch es eine positive und eine
	negative Teilladung ($\delta + / \delta$ -) besitzt.
	3 (- / - / - / /

Dipol-Dipol- Wechselwirkungen	elektrostatische Anziehung zwischen permanenten Dipolen	
Elektronegativität	elektrostatische Anziehung zwischen permanenten Dipolen	
Hydratation	Beim Lösen eines Stoffs, zum Beispiel eines Salzes, in Wasser bilden die Wassermoleküle eine Hydrathülle um die Ionen des Salzes.	
hydrophile Stoffe	Stoffe, die sich gut in Wasser lösen; die Moleküle weisen einen polaren Bau auf.	
Ketone	Die Gruppe der Ketone ist erkennbar an der Keto-Gruppe. Beispiel: Propanon H ₃ C CH ₃	
lipophile Stoffe	Stoffe, die sich nicht gut in Wasser, aber gut in unpolaren Lösungsmitteln lösen; die Moleküle weisen einen unpolaren Bau auf.	
Oberflächenspannung	Die Oberflächenspannung beruht auf nach innen gerichteten Anziehungskräften zwischen Teilchen einer Flüssigkeit.	
Partialladung	Ungleiche Ladungsverteilungen in einem Molekül, die durch die Elektronegativitätsdifferenzen auftreten, werden mit Hilfe von Partialladungen in der Molekülformel gekennzeichnet. (δ + / δ -)	
Van-der-Waals- Wechselwirkungen	schwache Anziehungskräfte vor allem bei unpolaren Molekülen	
	London-Dispersions-Wechselwirkungen:	
	Spontaner Dipol: asymmetrische Ladungsverteilung führt zu +/- geladenen Bereichen im Molekül	
	Induzierter Dipol: Polarisierung von Atomen/Molekülen durch spontane Dipole; schwächste der zwischenmolekularen Wechselwirkungen	
	Dipol-Dipol-Wechselwirkungen: elektrostatische Anziehung zwischen permanenten Dipolen	
Wasserstoffbrücken	Eine Wasserstoffbrücke beruht auf der Anziehung zwischen einem stark positiv polarisierten Wasserstoffatom eines Moleküls und dem freien Elektronenpaar der stark negativ polarisierten Atome F, O, N eines benachbarten Moleküls: stärkste der zwischenmolekularen Wechselwirkungen	
4. Säuren und	4. Säuren und Basen: Die Chemie der Elektronenübergänge	
Ampholyt	Teilchen, das je nach Reaktionspartner als Säure oder Base reagieren kann (z.B. H ₂ O).	

Autoprotolyse des	Als Ampholyt können Wassermoleküle miteinander zu
Wassers	Oxoniumionen und Hydroxidionen reagieren, allerdings
	reagieren die gebildeten Ionen schnell wieder zurück.
	$c(H_3O^+) = c(OH^-) = 10^{-7} \text{ mol/l}$
Base	Teilchen, das Protonen aufnehmen kann
	→ Protonenakzeptor
Lauge (= alkalische	Laugen enthalten stets Hydroxid-Ionen (OH ⁻).
Lösung)	Metalloxide reagieren mit Wasser zu Laugen.
Neutralisation	Allgemeine Neutralisationsreaktion:
	Säure + Base → Wasser + Salz
pH-Wert	Maß für den sauren, neutralen oder basischen
	Charakter einer wässrigen Lösung
	pH-Wert = negativer dekadischer Logarithmus des
	Zahlenwerts der Oxoniumionenkonzentration
	saure Lösungen: pH < 7
	neutrale Lösungen: pH= 7
	alkalische Lösungen: pH > 7
Reversible Reaktion	Reaktionen können unter bestimmten Bedingungen in
und das chemische	beide Richtungen ablaufen, sodass sich eine "stabile"
Gleichgewicht	Verteilung der Substanzen auf Edukt- und Produktseite
	einstellt (= chemisches Gleichgewicht).
	$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$
	Reaktionen, die umkehrbar sind, werden reversible
	Reaktionen genannt.
	general general
	Es stellt sich dabei ein dynamisches Gleichgewicht ein,
	d.h. die Hin- und Rückreaktionen kommen auch im
	Gleichgewichtszustand nicht zum Erliegen, sondern
	laufen in gleicher Anzahl ab.
Säure	Teilchen, das Protonen abgeben kann
	→ Protonendonator!
	Saure Lösungen enthalten stets Oxonium-Ionen (H ₃ O ⁺)
	sowie den Säurerest.
	Nichtmetalloxide reagieren mit Wasser zu Säuren.
Säure-Base-Indikator	Indikatoren (lat. indicare = anzeigen) zeigen durch ihre
	Farbe an, ob eine Lösung sauer, basisch oder neutral
	reagiert. Beispiele: Bromthymolblau, Lackmus,
	Phenolphthalein
Säurestärke	Je stärker eine Säure, desto besser/leichter kann sie
	Protonen an Wasser abgeben. Bei starken Säuren
	geben fast alle Säuremoleküle ihre Protonen ab.
Titration	Verfahren der quantitativen Analyse in der
	Chemie:
	Ein bekannter Stoff, dessen Konzentration
	unbekannt ist (Probelösung / Vorlage), wird in einer

	gezielten chemischen Reaktion (z.B. Neutralisation) mit einer Maßlösung / Titrans
	umgesetzt, deren Konzentration und Volumen bekannt ist.
	5. Elektronenübergänge
Aufstellen von komplexen	Schritt: Edukte und Produkte ermitteln
Redoxgleichungen	Schritt: Edukte und Produkte den beiden Teilgleichungen (Oxidation / Reduktion) zuordnen
	3. Schritt: Oxidationszahlen der Elemente ermitteln, die ihre Oxidationszahl verändern
	4. Schritt: Atombilanz = Gleichstellen der Anzahl der Atome, die ihre Oxidationszahl verändern (durch Koeffizienten)
	5. Schritt: Elektronenbilanz = Darstellen des Anstiegs bzw. des Absinkens der Oxidationszahlen durch Abgabe bzw. Aufnahme von Elektronen (eventuelle Koeffizienten und Indices miteinbeziehen!)
	6. Schritt: Ladungsbilanz = Gleichstellen der Ladung (sowohl Edukte, Produkte als auch Elektronen) auf beiden Seiten der Reaktions-gleichungen durch Oxoniumionen (H ₃ O ⁺), Hydroxidionen (OH ⁻) oder Oxidionen (O ²⁻)
	7. Schritt: Stoffbilanz = Richtigstellen der Reaktionsgleichung durch Hinzufügen von i.d.R. Wasser (H ₂ O)
	8. Schritt: Teilgleichungen mit einem Faktor multiplizieren, sodass die Anzahl der abgegebenen und aufgenommenen Elektronen gleichgroß ist
	9. Schritt: Beide Teilgleichungen zusammenfassen und Stoffe / Koeffizienten wenn möglich streichen / kürzen
Akkumulator (Akku)	Durch die Umkehrbarkeit einer Redoxreaktion lässt sich mithilfe einer externen Spannungsquelle ein System konstruieren, bei dem eine wiederholte Umwandlung von chemischer in elektrische Energie und zurück möglich ist.
Oxidationszahl	hypothetische (oder wirkliche) Ladungszahl von Atomen / Ionen; wird mit römischen Zahlen angegeben, kann positiv oder negativ sein; Bestimmung durch die Regeln der Prioritätenliste oder über die Valenzstrichformel

0 11 11 11 11 11 11 11 11 11 11 11 11	Dis O diagram and the selection All also de la
Oxidierbarkeit primärer	Die Oxidationsprodukte primärer Alkohole sind
Alkohole (partielle	Alkanale = Aldehyde.
Oxidation)	
Oxidierbarkeit	Die Oxidationsprodukte sekundärer Alkohole sind
sekundärer und	Alkanone = Ketone.
tertiärer Alkohole	
	Tertiäre Alkohole lassen sich nicht oxidieren.
Oxidierbarkeit von	Die Oxidationsprodukte von Aldehyden sind
Aldehyden und	Carbonsäuren.
Ketonen im Vergleich	Carbonsauren.
Retolieli illi Vergielcii	Ketone lassen sich nicht oxidieren.
Champingaraiba	
Spannungsreihe	Die Spannungsreihe erlaubt Voraussagen, welche
	Redoxreaktionen freiwillig ablaufen. Die Elektronen
	fließen stets vom unedleren Element zum edleren, das
	unedlere Element wird also oxidiert, das edlere
	reduziert.
6.	Nukleophil-Elektrophil-Reaktionen
Acetal / Vollacetal	Halbacetale lassen sich selten isolieren (Ausnahme:
	Zucker).
	In den meisten Fälle reagieren sie unter saurer
	Katalyse mit Alkohol (im Überschuss) zu einem
	Vollacetal weiter.
Ester	Produkt der Reaktion von einem Alkohol mit einer
	Carbonsäure
	Darstellung: säurekatalysierte Kondensation (Reaktion
	unter Wasserabspaltung)
	Esterhydrolyse = Verseifung = Esterspaltung:
	Carbonsäureester reagiert mit Wasser zu einer
	Carbonsäure und einem Alkohol. Somit ist sie die
	Umkehrreaktion der Estersynthese.
Ether	Produkt der Reaktion von zwei Alkoholen
	Darstellung: säurekatalysierte Kondensation (Reaktion
	unter Wasserabspaltung)
Fett	organisches Molekül aus zwei verschiedenen
	Molekültypen, dem Trägermolekül Glycerin (=
	Propan-1,2,3-triol) und drei daran gebundenen
	Fettsäuren
	Synthese von Fetten: Dreifache
	Esterkondensation
Glucose	Einfachzucker (Monosaccharid), Fotosyntheseprodukt;
	Aldose:
	- 6 Kohlenstoff-Atome (von C ₁ bis C ₆ benannt)
	· · · · · · · · · · · · · · · · · · ·
	- Aldehydgruppe an C ₁
	- Hydroxygruppen an C ₂ -C ₆
	Wichtig: Die Stellung der Hydroxygruppen an den
	Kohlenstoffatomen C ₂ -C ₅ ist festgelegt. Bei der Glucose

	(genauer: D-Glucose) stehen diese in der Fischer-
	Projektion von C ₂ bis C ₅ :
Glucoso Pingsobluss	rechts, links, rechts, rechts (ta-tü-ta-ta). Intramolekulare nukleophile Addition der
Glucose - Ringschluss	Hydroxygruppe des C ₅ - Atoms an die
	Aldehydgruppe (intramolekular).
	Bei der Reaktion bildet sich ein ringförmiges
	Halbacetal; diese Reaktion läuft in wässrigen Lösungen
	der Glucose ab
Halbacetal	Produkt, der Reaktion von Alkohol mit Aldehyd in einer
	nucleophilen Addition
Keto-Enol-Tautomerie	Durch zwei sogenannte Keto-Enol-Umlagerungen kann
	Fructose über ein Zwischenprodukt in Glucose
	umgewandelt werden und umgekehrt.
Mehrfachzucker	3
Weilitachzucker	Verknüpfung von Einfachzuckern (Monosacchariden) in deren Ringstruktur
	→ Zweifachzucker (Disaccharide) und
	Vielfachzucker (Polysaccharid), wie z.B. Stärke
	Violidorization (i diyodoonana), wie z.b. diame
	Bindung zwischen der Hydroxygruppe des C₁- Atoms
	und des C ₄ - Atoms des benachbarten Rings unter
	Wasserabspaltung = Kondensation;
Nukleophil-Elektrophil-	Nukleophil ("kernliebend"):
Reaktionen	Nucleophile sind Stoffe, die über mindestens ein freies
	Elektronenpaar verfügen. Mit diesem Elektronenpaar
	können sie an einem positiv geladenen / polarisierten
	Kohlenstoffatom angreifen und dadurch sogar andere
	Bindungspartner (= Substituenten) verdrängen.
	Elektrophil ("elektronenliebend"):
	Elektrophile sind Stoffe mit Elektronenmangel,
	sodass sie mit Substanzen reagieren, die über ein
	freies Elektronenpaar verfügen.
Peptidbindung	Die Carbonsäuregruppe einer Aminosäure kann
_	unter Wasserabspaltung mit der Aminogruppe
	einer anderen Aminosäure zu einer Peptidbindung
	reagieren.
Proteine	Makromoleküle, die aus 20 verschiedenen
	Aminosäuren, mindestens 100 Aminosäuren, in höchst
	variabler Anzahl und Abfolge, zusammengesetzt sind.
	Aminosäure: ein zentrales Kohlenstoffatom mit einer
	Aminogruppe -NH ₂ , einer Carboxygruppe -COOH,
	einem Wasserstoffatom und einem organischen Rest
Proteinstrukturen	Primärstruktur: Abfolge der Aminosäuren, die
i i Otomoti untui GII	kettenförmig durch Peptidbindungen verbunden sind.
	The state of the s
	l

Grundwissenskatalog Chemie der Jahrgangsstufe 10 SG

	 2. Sekundärstruktur: Lokale räumliche Anordnung, stabilisiert durch Wasserstoffbrücken zwischen verschiedenen Peptidbindungen. Zwei mögliche Strukturen: α-Helix-Struktur β-Faltblatt-Struktur
	3. Tertiärstruktur: Räumliche Anordnung des Gesamtproteins aufgrund von Wechselwirkungen und Bindungen zwischen den verschiedenen Resten.
Verseifung	Natriumsalze oder Kaliumsalze der Fettsäuren