Grundwissen Mathematik 10. Klasse G8

Geometrie

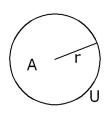
1. Kreis und Kugel

1.1. Der Kreis

Umfang: $U = 2\pi \cdot r$

Fläche: $A = \pi \cdot r^2$

Die Kreiszahl π ist irrational. π = 3,13159...



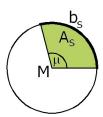
1.2. Der Kreissektor

Bogenlänge

$$b_s = \frac{\mu}{360^{\circ}} \cdot 2\pi \cdot r$$

Sektorfläche:

$$A_s = \frac{\mu}{360^{\circ}} \cdot \pi \cdot r^2$$



1.3. Die Kugel

Oberfläche: $O = 4\pi \cdot r^2$

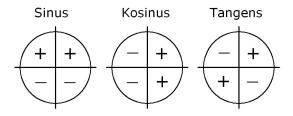
Volumen: $V = \frac{4}{3} \cdot \pi \cdot r^3$

2. Trigonometrie

2.1. Sinus-, Kosinus und Tangenswerte für Winkel φ zwischen 0° und 360°

Für stumpfe oder überstumpfe Winkel φ liefert

- der Quadrant das Vorzeichen
- die Differenz zwischen φ und 180° bzw. 360° den zugehörigen spitzen Winkel.



Beispiele:

•
$$\sin(120^\circ) = \sin(180^\circ - 120^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2}$$

•
$$\cos(225^\circ) = \cos(225^\circ - 180^\circ) = \cos(45^\circ) = \frac{\sqrt{2}}{2}$$

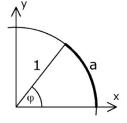
Für beliebige Winkel größer als 360° oder kleiner als 0° nutzen wir die Periodizität von Sinus, Kosinus und Tangens aus.

•
$$\tan(390^\circ) = \tan(390^\circ - 360^\circ) = \tan(30^\circ) = \frac{\sqrt{3}}{3}$$

2.2. Das Bogenmaß

Das Bogenmaß a eines Winkels φ ist die Länge des zugehörigen Bogens im Einheitskreis:

$$a = \frac{\phi}{180^{\circ}} \cdot \pi$$



φ	30°	45°	60°	90°	180°	270°	360°
а	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

Funktionen

3. Trigonometrische Funktionen

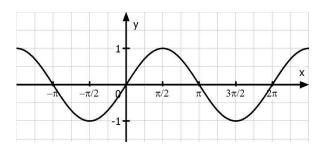
3.1. Sinus- und Kosinusfunktion

Wird jedem Winkel x im Bogenmaß der zugehörige Sinus- bzw. Kosinuswert zugeordnet, so erhält man die Sinus- bzw. Kosinusfunktion.

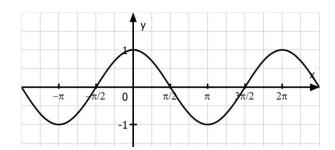
Eigenschaften:

- Definitionsmenge D = R
- Wertemenge = [-1; 1]
- Periodisch mit der Periodenlänge 2π
- Der Graph der Sinusfunktion ist punktsymmetrisch zum Ursprung
- Der Graph der Kosinusfunktion ist achsensymmetrisch zur y-Achse.

$$f(x) = \sin(x)$$



$$f(x) = cos(x)$$



3.2. Die allgemeine Sinusfunktion

Die allgemeine Sinuskurve zu $y = a \cdot \sin[b \cdot (x - c)] + d$ ist gegenüber der "normalen" Sinuskurve zu $y = \sin(x)$

- um c in x-Richtung verschoben
- Die Periodenlänge ist $\frac{2\pi}{b}$
- Die Amplitude ist |a|.
 Bei negativem a ist die Kurve zudem an der x-Achse gespiegelt.
- um d in y-Richtung verschoben.

4. Expontialfunktion und Logarithmus

4.1. Exponentialfunktion

Die allgemeine Exponentialfunktion

$$f: y = b \cdot a^{X} \ (a > 0, a \ne 1)$$

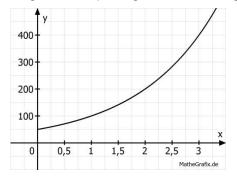
hat folgende Eigenschaften:

- Definitionsmenge ist gleich ℝ.
- Schnittpunkt mit der y-Achse ist P(0|b)
- Die x-Achse ist waagrechte Asymptote.
- Mit wachsendem x nehmen die Funktionswerte für a < 1 ab (exponentielle Abnahme) a > 1 zu (exponentielle Zunahme)
- b heißt Startwert und a Wachstums- bzw. Abnahmefaktor.

Beispiel:

Eine Meerschweinchenpopulation besteht am Anfang zu 50 Tieren. Unter optimalen Bedingungen kann sich die Population in einem Jahr verdoppeln. Folglich ist b = 50, a = 2, x die Zeit in Jahren und $f(x) = 50 \cdot 2^x$ die Anzahl der Tiere nach x Jahren.

Folgender Graph zeigt die Entwicklung:



4.2. Der Logarithmus

Definition:

Der Logarithmus von b zur Basis a (a > 0, $a \ne 1$, b > 0) ist diejenige Zahl, mit der a potenziert werden muss, um b zu erhalten.

Kurz:
$$a^{\log_a(b)} = b$$

Rechenregeln:

(1)
$$\log_a(b \cdot c) = \log_a(b) + \log_a(c)$$

(2)
$$\log_a(\frac{b}{c}) = \log_a(b) - \log_a(c)$$

(3)
$$\log_a(b^r) = r \cdot \log_a(b)$$

Beispiele:

- $\log_2(32) = 5$, da $2^5 = 32$
- $\log_2(4 \cdot 32) = \log_2(4) + \log_2(32) = 7$

•
$$\log_2\left(\frac{1}{8}\right) = \log_2(1) - \log_2(8) = -3$$

•
$$\log_2(8^3) = 3 \cdot \log_2(8) = 3 \cdot 3 = 9$$

4.3. Exponential- und Logarithmusgleichungen

Exponentialgleichungen löst man durch Logarithmieren oder geschicktes Umformen.

Beispiel:

Löse $25^{X+1} = 0.2$

•
$$25^{X+1} = 0.2$$
 | Einsetzen in $\log_{25}(...)$
 $\log_{25}(25^{X+1}) = \log_{25}(0.2)$
 $(X+1) \cdot 1 = -\frac{1}{2}$ $\Rightarrow X = -1.5$

Alternative:

$$(5^{2})^{X+1} = 5^{-1}$$

 $5^{2X+2} = 5^{-1}$
 $2X + 2 = -1$ $\Rightarrow X = -1,5$

5. Ganzrationale Funktionen

5.1. Potenzfunktionen

Funktionen der Form $x \mapsto a \cdot x^n$, $n \in \mathbb{N}$, heißen **Potenzfunktionen** (vom Grad n).

Eigenschaften der Graphen:

	n gerade	n ungerade	
a > 0	Parabel "kommt von links oben und geht nach rechts oben"	Wendeparabel "kommt von links unten und geht nach rechts oben"	
a < 0	Parabel "kommt von links unten und geht nach rechts unten"	Wendeparabel "kommt von links oben und geht nach rechts unten"	

Das Verhalten der Graphen für $x \to \pm \infty$ lässt sich mit Hilfe des Limes-Symbols etwas mathematischer ausdrücken (siehe 6.3. Grenzwerte im Unendlichen)

5.2. Polynomfunktionen

Definitionen:

Ein Term der Form

$$a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

mit reellen Koeffizienten $a_0, a_1, a_2, ...a_n$, $(a_n \neq 0)$ heißt **Polynom** vom Grad n.

an heißt der Leitkoeffizient.

Eine Funktion $p: x \mapsto p(x)$ heißt **ganzrationale** Funktion vom Grad n, wenn p(x) ein Polynom n-ten Grades ist.

Eigenschaften:

Das Verhalten der Graphen von p(x) wird für betragsmäßig große x-Werte durch das der Potenzfunktion $x \mapsto a_n x^n$ beschrieben, ansonsten spielen die Nullstellen der ganzrationalen Eurktion

spielen die Nullstellen der ganzrationalen Funktion eine wichtige Rolle. Diese findet man in der Regel mit Hilfe der Polynomdivision.

5.3. Polynomdivision

Dazu muss eine Nullstelle x₁ bekannt sein oder durch geschicktes Erraten (in der Regel aus der Menge der ganzzahligen Teiler des konstanten Summanden des Polynoms) ermittelt werden.

Sodann dividiert man das Polynom p(x) durch $(x - x_1)$.

Dadurch wird der Grad des Polynoms um 1 kleiner und das Verfahren kann u.U. erneut durchgeführt werden.

Beispiel:

Löse die Gleichung $x^3 - 6x^2 + 7x + 2 = 0$

- Finde eine Nullstelle $x_1 \in \{-2; -1; 1; 2\}$
- $x_1 = 2$
- Teile das Polynom durch (x − 2)

$$(x^{3}-6x^{2}+7x+2):(x-2)=x^{2}-4x-1$$

$$\frac{-(x^{3}-2x^{2})}{-4x^{2}+7x}$$

$$\frac{-(-4x^{2}+8x)}{-x+2}$$

$$\frac{-(-x+2)}{-(-x+2)}$$

 Die Lösungen der Gleichung x² – 4x – 1 (z.B. mit der Mitternachtsformel) ergeben die weiteren Nullstellen:

$$x_2 = 2 + \sqrt{5}$$
 und $x_3 = 2 - \sqrt{5}$

5.4. Nullstellen und Faktorisieren

Eine ganzrationale Funktion vom Grad n besitzt maximal n Nullstellen.

Mit Hilfe der Nullstellen lässt sich der Funktionsterm faktorisieren.

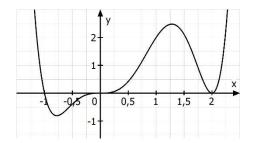
Aus der faktorisierten Form erkennt man die Vielfachheiten der Nullstellen.

Diese bestimmen das Verhalten des Graphen in der Umgebung der Nullstellen.

- ungerade Vielfachheit => Vorzeichenwechsel
- gerade Vielfachheit => kein Vorzeichenwechsel

Beispiel:

 $f(x) = (x+1) \cdot x^3 \cdot (x-2)^2$ besitzt bei x = -1 eine einfache, bei x = 0 eine dreifache und bei x = 2 eine doppelte Nullstelle. Die Abbildung zeigt die Auswirkungen der Vielfachheiten auf den Graphen:



6. Eigenschaften von Funktionen und deren Graphen

6.1. Formänderung von Graphen

Gegeben sei eine Funktion f mit Graph G_f . Dann besitzt die Funktion $g: x \mapsto a \cdot f \big[b \cdot \big(x - c \big) \big] + d$ einen Graphen G_g , der gegenüber G_f

- um c in x-Richtung verschoben,
- in x-Richtung um den Faktor $\frac{1}{b}$ gestreckt,
- in y-Richtung um den Faktor |a| gestreckt und bei negativem a ist die Kurve zudem an der x-Achse gespiegelt und
- um d in y-Richtung verschoben ist.

6.2. Symmetrie von Funktionsgraphen

- Gilt f(-x) = f(x), so ist G_f achsensymmetrisch zur y-Achse.
- Gilt f(-x) = -f(x), so ist G_f punktsymmetrisch zum Koordinatenursprung.
- Ansonsten keine leicht erkennbare Symmetrie vorhanden.

6.3. Grenzwerte im Unendlichen

Konvergenz:

Nähern sich die Funktionswerte f(x) einer Funktion f für $x \to \pm \infty$ einer Zahl c beliebig genau, so heißt c **Grenzwert** (Limes) der Funktion f für $x \to \pm \infty$.

In Zeichen:
$$\lim_{x \to \pm \infty} f(x) = c$$

Wachsen bzw. sinken die Funktionswerte f(x) einer Funktion f für x → ±∞ über bzw. unter alle Grenzen, so nennt man die Funktion f bestimmt divergent für x → ±∞.

Auch in diesem Fall verwenden wir symbolisch die Limes-Schreibweise: $\lim_{x\to +\infty} f(x) = \pm \infty$

 Funktionen, welche für x → ±∞ weder konvergent, noch bestimmt divergent sind, heißen unbestimmt divergent.

Beispiele:

•
$$\lim_{X \to \infty} (2 - 0.5^{X}) = 2,$$

$$da \lim_{X \to \infty} 0.5^{X} = 0 \text{ (Konvergenz)}$$

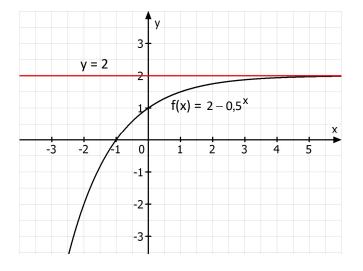
•
$$\lim_{x \to -\infty} (2 - 0.5^x) = -\infty$$

da $\lim_{x \to -\infty} 0.5^x = +\infty$ (bestimmte Divergenz)

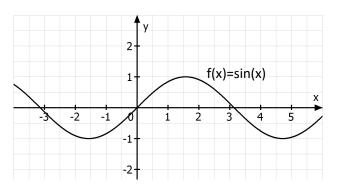
Die Abbildung zeigt die Auswirkungen auf die Graphen.

Wegen der Konvergenz ist die Gerade mit der Gleichung y = 2 Asymptote der Funktion

$$f(x) = 2 - 0.5^{x}$$
 für $x \to \infty$.

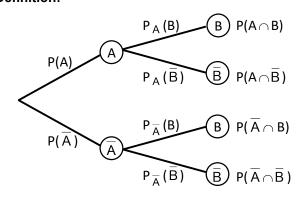


 f(x) = sin(x) ist unbestimmt divergent, da die Funktionswerte periodisch zwischen +1 und -1 schwanken.



Stochastik

7. Die bedingte Wahrscheinlichkeit Definition:



Sind A und B Ereignisse eines Zufallsexperiments mit $P(A) \neq 0$ so versteht man unter der **bedingten Wahrscheinlichkeit** $P_A(B)$ die Wahrscheinlichkeit für das Eintreten von B, wenn A bereits eingetreten ist.

Veranschaulichung:

Mit Hilfe der Pfadregeln ergibt sich: $P_A(B) = \frac{P(A \cap B)}{P(A)}$

Beispiel:

In einem Betrieb kommt es an 1% der Arbeitstage zu einem Brand (B). In 90% dieser Fälle wird ein automatischer Alarm ausgelöst (A). Liegt kein Brand vor, so gibt es mit einer Wahrscheinlichkeit von 5% einen Fehlalarm.

Wie groß ist die Wahrscheinlichkeit, dass es wirklich brennt, wenn ein Alarm ausgelöst wird?

$$P_{A}\left(B\right) = \frac{P(A \cap B)}{P(A)} = \frac{0.01 \cdot 0.9}{0.01 \cdot 0.9 + 0.01 \cdot 0.05} \approx 0.154 = 15.4\%$$