Grundwissen Mathematik 7. Klasse G8

Funktionen

1. Terme

Ausdrücke wie z.B. (3a - b)(2a + 4b) oder

$$6a^2 + 10ab - 4b^2$$
 oder $\frac{4}{x(x-3)}$ nennt man **Terme**.

In den Term $T_1(a,b) = (3a-b)(2a+4b)$ können für a und b alle rationalen Zahlen eingesetzt werden.

Der Wert eines Terms hängt davon ab, welche Zahlen aus der Definitionsmenge für die Variablen eingesetzt werden.

In
$$T_2(x) = \frac{4}{x(x-3)}$$
 dürfen für x weder 0 noch 3

eingesetzt werden, da sonst der Nenner Null wird.

Die letzte auszuführende Rechenoperation entscheidet über die Struktur und den Namen des Terms.

$$T_2(2) = \frac{4}{2 \cdot (x-3)} = \frac{4}{2 \cdot (-1)} = \boxed{\frac{4}{-2}} = -2$$

Der Term ist ein Quotient

Nur gleichartige Terme lassen sich addieren und subtrahieren, z.B. $12a^2b - 7a^2b = 5a^2b$ 3ab und 4a²b sind nicht gleichartig.

Alle Terme lassen sich multiplizieren. Produkte von Summen wie (3a - b)(2a + 4b) lassen sich ausmultiplizieren, z.B. $3a^2b \cdot 4a^3b^2 = 12a^5b^3$

$$(3a-b)(2a+4b) = 6a^2 + 12ab - 2ab - 4b^2$$

= $6a^2 + 10ab - 4b^2$

2. Rechengesetze

Kommutativgesetz der Addition und der Multiplikation

(a, b rationale Zahlen)

$$a+b=b+a$$
 und $a \cdot b=b \cdot a$

Assoziativgesetz der Addition und der Multiplikation (a, b, c rationale Zahlen)

$$a+b+c = (a+b)+c = a+(b+c)$$
 und
 $a \cdot b \cdot c = (a \cdot b) \cdot c = a \cdot (b \cdot c)$

Distributivgesetz (a, b, c rationale Zahlen)

$$a \cdot (b + c) = a \cdot b + a \cdot c$$
 und

$$a \cdot (b - c) = a \cdot b - a \cdot c$$
 und

$$(a+b): c = a: c+b: c$$
 $(c \neq 0)$

Einfache Potenzrechnung

am für alle rationalen Zahlen a, b und für alle natürlichen Zahlen n, m heißt Potenz.

Sonderfall: $a^0 = 1$

$$a^m \cdot a^n = a^{m+n}$$

z.B.
$$a^5b^2 \cdot a^3b^7 = a^8b^9$$

$$(a \cdot b)^n = a^n \cdot b^n$$

z.B.
$$(a \cdot b)^3 = a^3 \cdot b^3$$

$$\left(a^{m}\right)^{n}=a^{m\cdot n}$$

$$(a^m)^n = a^{m \cdot n}$$
 z.B. $(a^3)^5 = a^{3 \cdot 5} = a^{15}$

Allgemeine Rechengesetze bei Termumformungen

- → Klammern zuerst (innere vor äußere)
- → Potenz- vor Punkt- vor Strichrechnung

3. Gleichungen

3.1. Begriffe

Gleichungen der Art 3x - 2 = 0 oder 5x - 3 = 2 nennt man lineare Gleichungen. Sie sind stets eindeutig lösbar.

Sind Gleichungen nicht linear, dann können sie auch mehrere Lösungen oder gar keine Lösung haben.

z.B. $x^2 = 4$ hat zwei Lösungen: -2 und 2, die Lösungsmenge ist $L = \{-2, 2\}$

> $x^2 = -4$ ist nicht lösbar, die Lösungsmenge ist die leere Menge L = {}.

Eine Gleichung ist allgemeingültig, wenn alle rationalen Zahlen Lösungen der Gleichung sind.

z.B. 2(x+3) = 2x+6 hat die Lösungsmenge L = Q (Menge der rationalen Zahlen)

3.2. Lösen von Gleichungen mittels Äguivalenzumformungen

- → jede Seite vereinfachen
- → auf beiden Seiten der Gleichung wird dieselbe Zahl oder derselbe Term addiert (subtrahiert)
- → auf beiden Seiten der Gleichung wird mit derselben, von Null verschiedenen Zahl multipliziert (dividiert), mit x darf nicht multipliziert bzw. durch x darf nicht geteilt werden!

z.B.
$$4x - 5 + 2x = -2 + 8x + 4$$

$$6x - 5 = 2 + 8x \quad | -6x$$

$$-5 = 2 + 2x \quad | -2$$

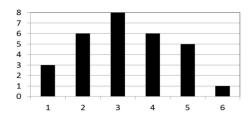
$$-7 = 2x \quad | : 2$$

$$-3,5 = x \quad L = \{-3,5\}$$

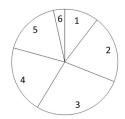
4. Daten auswerten

4.1. Diagramme

Für das Vergleichen von Daten sind z.B. Säulen- und Balkendiagramme geeignet.



Die Verteilung einer Gesamtheit kann mithilfe von Kreisdiagrammen gezeigt werden.



4.2. Arithmetisches Mittel ("Durchschnitt")

Quotient aus der Summe aller Werte einer Datenreihe und der Anzahl der Werte.

z.B. Notenspiegel einer Schulaufgabe

Note	1	2	3	4	5	6
Anzahl	3	6	8	6	5	1

$$\frac{3 \cdot 1 + 6 \cdot 2 + 8 \cdot 3 + 6 \cdot 4 + 5 \cdot 5 + 1 \cdot 6}{3 + 6 + 8 + 6 + 5 + 1} = \frac{94}{29} \approx 3{,}24$$

5. Prozentrechnung

Grundgleichung: PS · GW = PW

z.B. Berechne 15% von 60. $0.15 \cdot 60 = 9$

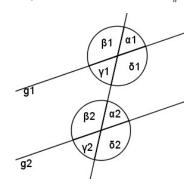
15% von welcher Zahl sind 18? 0.15 · GW = 18 GW = 18 : 0.15 = 120

Wie viel Prozent sind 18 von 72? PS \cdot 72 = 18 PS = 18 : 72 = 25%

Geometrie

6. Wichtige geometrische Sätze

6.1. Winkel an Geraden und Doppelkreuzungen mit parallelen Geraden $g_1 \parallel g_2$



Nebenwinkel ergeben zusammen 180°,

z.B.
$$\beta_2 + \alpha_2 = 180^{\circ}$$

Scheitelwinkel sind gleich groß,

z.B.
$$\beta_1 = \delta_1$$

Stufenwinkel sind gleich groß,

z.B.
$$\alpha_1 = \alpha_2$$

Wechselwinkel sind gleich groß,

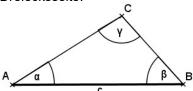
z.B.
$$\alpha_2 = \gamma_1$$

Ergänzungswinkel ergeben zusammen 180°,

z.B.
$$\beta_2 + \gamma_1 = 180^{\circ}$$

6.2. Seiten-Winkel-Beziehungen im Dreieck

Der längeren Seite (hier c) liegt stets der größte Winkel gegenüber, der kürzesten stets der kleinere. Die Summe zweier Dreiecksseiten ist stets größer als die dritte Dreiecksseite.



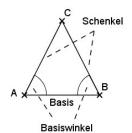
Dreiecksungleichung:

Die Summe zweier Seiten im Dreieck ist immer größer als die dritte Seite.

Gleichschenkliges Dreieck:

Zwei Seiten sind gleich lang (Schenkel).

Das Dreieck hat eine Symmetrieachse und die Winkel an der Basis sind gleich groß (Basiswinkel).



Gleichseitiges Dreieck:

Alle drei Seiten sind gleich lang. Das Dreieck hat drei Symmetrieachsen und alle Winkel sind gleich groß: 180°: 3 = 60°.

6.3. Innenwinkelsätze

Die Summe der Innenwinkel im Dreieck ist 180°. $\alpha + \beta + \gamma = 180^{\circ}$

Die Summe der Innenwinkel im Viereck ist 360°. $\alpha + \beta + \gamma + \delta = 360^{\circ}$.

6.4. Kongruenzsätze für Dreiecke

Dreiecke sind kongruent,

wenn...

Kongruenzsatz SSS: ...sie in drei Seiten

übereinstimmen.

Kongruenzsatz SWS: ...sie in zwei Seiten und

ihrem Zwischenwinkel übereinstimmen.

Kongruenzsatz WSW: ...sie in einer Strecke und

den anliegenden Winkeln

übereinstimmen

bzw. bzw.

Kongruenzsatz SWW: ...sie in einer Strecke,

einem anliegenden und einem nicht anliegenden Winkel übereinstimmen.

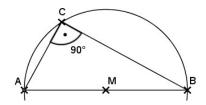
Kongruenzsatz SsW: ...sie in zwei Seiten und

dem Gegenwinkel der

größeren Seite übereinstimmen.

6.5. Satz des Thales

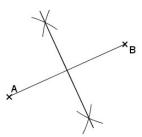
Genau dann, wenn C auf einem Kreis mit dem Durchmesser [AB] liegt, ist der Winkel ACB ein rechter Winkel.



7. Grundkonstruktionen

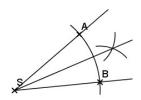
7.1. Strecke halbieren bzw. Mittelsenkrechte

- Ziehe jeweils einen Kreisbogen mit gleichem Radius um die Endpunkte der Strecke [AB].
- Die Gerade durch den Schnittpunkt der Kreisbögen ist die Mittelsenkrechte, die die Strecke zugleich halbiert.



7.2. Winkel halbieren bzw. Winkelhalbierende

- Ziehe einen Kreisbogen um den Scheitel S, der die Schenkel in A und B schneidet.
- Ziehe zwei Kreisbögen mit gleichem Radius um A und B.
- Die Gerade durch den Schnittpunkt der beiden Kreisbögen und S ist die Winkelhalbierende.



7.3. Lot fällen und Lot errichten

- Ziehe einen Kreisbogen um P, der die Gerade in A und B schneidet.
- Ziehe zwei Kreisbögen mit gleichem Radius um A und B.
- Die Gerade durch den Schnittpunkt der Kreisbögen und P ist das Lot durch P auf AB.

